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Navier–Stokes equations with first-order and second-order accurate slip boundary conditions are pro-
vided to describe the two-dimensional gaseous steady laminar flow between two plates in transition
region. A new similarity transformation for the controlling equations with boundary conditions was given
so as to obtain the ordinary differential controlling equation. An analytical solution was provided for this
strong nonlinear ordinary differential equation using a powerful, easy-to-use analytic technique for non-
linear problems, that is, the homotopy analysis method (HAM). By analyzing solutions and comparing
with the results of other investigators, it is proved that the results are not accurate or physically wrong
either obtained from calculation of Navier–Stokes equations with first-order boundary condition or sec-
ond-order slip boundary condition in transition flow region, although some parameters may fit well with
the experimental data. So, Navier–Stokes equations cannot govern the gaseous flow in transition region.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There is an increasing number of applications that involve mi-
cro-scale devices including sensor, heat exchangers and micro-
power system. Micro-system will own many advantages that do
not appear in conventional size with the size decreasing [1]. Mi-
cro-channels, however, are the basic structures in these systems.
Based on Knudsen (Kn) number, Beskok [2] classified the gas flow
in micro-channels into four flow regimes: continuum flow regime
(Kn 6 0.001), slip flow regime (0.001 < Kn 6 0.1), transition flow re-
gime (0.1 < Kn 6 10) and free molecular flow regime (Kn > 10). The
flow in many application of the micro/nano systems (the charac-
teristic length is ranged from 0.2 to 20 lm), such as hard disk drive,
micro-pumps, micro-valves and micro-nozzles, is in slip and tran-
sition flow regime, which is characterized by slip flow at wall. The
difficulties in experimental instruments and making precise mea-
surements restrict the developments of experimental methods as
the size decrease. Till now, only a few researchers [3,4] used the
experimental methods to investigate these problems. Numerical
simulations or analytical solutions have been the more commonly
used approaches to study gas flows through micro-channels.

Many researchers believed that rarefaction effects become more
important, and eventually the continuum approach breaks down
altogether as Kn number increases. Theoretically, the Navier–
Stokes equations are first-order accurate in Kn. So, they insisted
that Navier–Stokes equations cannot govern slip flow in transition
region with second-order or higher-order slip model. Namely, tra-
ditional macroscopic hydrodynamic descriptions are invalid, and
ll rights reserved.
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the full Boltzmann equation, Burnett equations and the molecu-
lar-based methods such as molecular dynamics (MD) and direct
simulation Monte Carlo (DSMC) [5] have to be employed for ana-
lytical or numerical studies. DSMC [6,7] is the main tool for the re-
search, and some good results were obtained by using this method.
The LBM has received considerable attention by fluid dynamic
researchers [8–11] in recent years. They insisted that the results
obtained from their calculation fit well with the experimental data.
Recently, Niu et al. [12] proposed a thermal lattice Boltzmann BGK
model for simulating the micro-thermal flow. The obtained results
were found to be in good agreement with those given from the
DSMC, the MD approaches and the Maxwell theoretical prediction.

On the other hand, some investigators [13,14,16] insisted that
using Navier–Stokes equations to describe rarefied gases flow in
transition region can still be valid by using a high order slip bound-
ary condition. Recently, Dongari et al. [14] used a second-order
accurate slip boundary condition that was suggested by Sreekanth
[15] to predict the flow characteristics. The results shown that the
validity of Navier–Stokes to rarefied gases can possibly be in-
creased up to Kn = 5.

The motivation of this paper is to lucubrate whether Navier–
Stokes equations with first-order or second-order accurate slip
boundary conditions can govern the high Kn number flows by
using an analytic method – homotopy analysis method (HAM)
[17–23].

2. Slip model

The classical description of the velocity slip in rarefied gases
flowing over a solid surface is the Maxwell [24] slip condition, and
is widely implemented in current rarefied gas flow researches.
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The ideal gas flow is considered and it is assumed that a percentage
of the wall collisions were specular whereas a remained percentage
were diffuse. Such an assumption allows an exchange of momen-
tum between the gas and the wall. The corresponding velocity slip
is given by,

us � uw ¼ k
ou
oy

ð1Þ

Here, us is slip velocity; uw is wall velocity, k ¼ 2�rv
rv

l. l is molecular
mean free path; rv is the tangential accommodation coefficient.

Based on Maxwell’s first-order slip model, Thompson developed
a second-order slip model,

us � uw ¼
2� rv

rv
Kn

ou
oy
þ Kn2

2
o2u
oy2

 !
ð2Þ

Many researches reported that this model cannot predict the
flow in high Kn number. So Beskok and Karniadakis [13] then sug-
gested the improved second-order slip conditions,

us � uw ¼
2� rv

rv

Kn
1� bKn

ou
oy

ð3Þ

where b is an empirical parameter whose value can be determined
by DSMC simulations for various Knudsen number regimes. They
claimed that they obtained excellent results by utilizing this model
as boundary conditions with Navier–Stokes equations in transition
region even in free molecular region.

For more widely range, Sreekanth [15] suggested the following
general form of second-order slip model,

us � uw ¼ C1l
ou
oy
þ C2l2 o2u

oy2 ð4Þ

Here C1 and C2 are two independent coefficients named the slip
coefficients.

In this paper, this general second-order slip model was used for
analytical solution.

3. Mathematical description of the problem

The calculated model is shown in Fig. 1. The problem is
assumed to be two-dimension. The inlet velocity distribution is
uniform. The distance between the two plates is 2H. The mathe-
matical problems are derived based on the following assumptions:
(1) the governing equations based on Navier–Stokes equations
with slip flow at walls can be used to describe the physical pro-
cesses; (2) the process is two-dimensional steady flow; (3) the flow
is laminar; (4) the body forces are neglected; (5) the effect of com-
pressibility and viscosity heating are neglected. According to the
above assumptions, the Navier–Stokes equations with the slip flow
boundary between two parallel plates in micro-scale are given as
follows:

Continuity equation
ou
ox
þ ov

oy
¼ 0 ð5Þ

Momentum equation u
ou
ox
þ v

ou
oy
¼ � 1

q
dp
dx
þ m

o2u
oy2 ð6Þ
Fig. 1. A schematic diagram of microchannel.
Boundary conditions are
On the walls

First-order slip model y ¼ 0 u ¼ k
ou
oy

ð7aÞ

Second-order slip model y ¼ 0 u ¼ C1k
ou
oy
þ C2k

o2u
oy2 ð7bÞ

On the centerline y ¼ H
ou
oy
¼ 0 v ¼ 0 ð8Þ

Here, k ¼ 2�rv
rv

l; l is molecular mean free path; rv is the tangential
accommodation coefficient. In this paper, it is defined rv = 1.

It is convenient to introduce the following dimensionless
variables,

g ¼ y
H
; uðgÞ ¼ Aþ B

xr

H

� �
f ðgÞ; u ¼ ou

oy
; v ¼ � ou

ox
ð9Þ

Defining:

r ¼ 1 p ¼ Axþ B
2H

x2 þ C
� �

k ð10Þ

where A, B, C, K are constant. Substituting Eqs. (9),(10) into Eqs. (5),
(6), (7), (8) the problem reduces to an ordinary differential equation
and boundary conditions as follow,

mf 000 þ Bff 00 � Bðf 0Þ2 ¼ H3

q
k ð11Þ

First-order slip model kf 00ð0Þ � Hf 0ð0Þ ¼ 0 ð12aÞ
Second-order slip model H2f 0ð0Þ � C1k

2f 000ð0Þ � C2kHf 00ð0Þ ¼ 0
ð12bÞ

and

f 00ð1Þ ¼ 0 f ð1Þ ¼ 0 ð13Þ

As we know, Kn ¼ l
H, and then Eq. (12) could be

Knf 00ð0Þ � f 0ð0Þ ¼ 0 ð14aÞ
f 0ð0Þ � C1Kn2f 000ð0Þ � C2Knf 00ð0Þ ¼ 0 ð14bÞ
4. Mathematical analyses for HAM solution

4.1. Basic idea of HAM

In 1992, Liao employed the basic ideas of the homotopy in
topology to propose a general analytic method for nonlinear prob-
lems, which is a powerful, easy-to-use analytic technique for non-
linear problems, namely homotopy analysis method (HAM) [17–
23]. This method has been successfully applied to many types of
nonlinear problems by others [25–29]. The basic idea of HAM is
introduced in Liao [17].

4.2. Solve with HAM

4.2.1. Solve first-order slip model
The homotopy analysis method is applied to solve the set of

nonlinear Eq. (11). According to Eqs. (13) and (14a) it is convenient
to choose,

f0ðgÞ ¼
1
6
g3 � 1

2
g2 � gKnþ Knþ 1

3
ð15Þ

Besides, choosing

L½Uðg; qÞ� ¼ o3Uðg; qÞ
og3 ð16Þ
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as the auxiliary linear operator. Based on Eq. (11), defining the non-
linear operators

N½Uðg; qÞ� ¼ m
o3Uðg; qÞ

og3 þ BUðg; qÞ o
2Uðg; qÞ

og2

� B
oUðg; qÞ

og

� �2

� H3

q
k ð17Þ

where q 2 [0,1] is an embedding parameter; U(g,q) is real functions
of g and q, then, the so-called zero-order deformation equation
were obtained,

ð1� qÞ½U000ðg; qÞ � f 0000 ðgÞ� ¼ q�hN½Uðg; qÞ� ð18Þ
Boundary conditions,

KnU00ð0; qÞ �U0ð0; qÞ ¼ 0; Uð0; qÞ ¼ 0; U0ð1; qÞ ¼ 0 ð19Þ
Obviously, U(g,0) = f0(g), U(g,1) = f(g). Differentiating the zero-or-
der deformation (18) m times with respect to q, then dividing it
by m!, and finally setting q = 0, the mth-order deformation equa-
tions were gotten,

L½fmðgÞ � vmfm�1ðgÞ� ¼ �hRmðfm�1Þ ð20Þ

With boundary conditions

Knf 00mð0Þ � f 0mð0Þ ¼ 0; fmð1Þ ¼ 0; f 00mð1Þ ¼ 0 ð21Þ

Here

vm ¼
0 m 6 1
1 m P 2

�
ð22Þ

Rmðfm�1Þ ¼ mf 000m�1ðgÞ �
kH3

q
ð1� vmÞ þ

Xm�1

k¼0

½BfkðgÞf 00m�1�kðgÞ

� Bf 0m�1�kðgÞf 0kðgÞ� ð23Þ

Substitute Eq. (23) into Eq. (20), there are

f 000m ðgÞ � vmf 000m�1ðgÞ ¼ �h mf 000m�1ðgÞ �
H3k
q
ð1� vmÞ

(

þ
Xm�1

k¼0

½BfkðgÞf 00m�1�kðgÞ � Bf 0m�1�kðgÞf 0kðgÞ�
)
ð24Þ
Table 1
f Value for first few orders at given Kn number

fm First-order slip model Second-order slip model

Kn = 0.024 Kn = 0.24 Kn = 0.024 Kn = 0.24

F0 0.267815 0.390934 0.238129 0.0652487
F1 0.0678415 0.0001981 0.000136539 0.000192004
4.2.2. Solve second-order slip model
According to (13) and (14b), it is convenient to choose,

f0ðgÞ ¼
1
6
g3 � 1

2
g2 þ ðC1Knþ C2Kn2Þg� C2Kn2 � C1Knþ 1

3
ð25Þ

It has the same auxiliary linear operator and nonlinear operators as
defined in the process of solving the first-order slip model. So the
recursive formula must be the same, and the solved processes are
almost identical. The difference only exists in boundary conditions.
Boundary conditions (21) for first-slip model can be written as fol-
low for second-order model,

f 0mð0Þ � C1Kn2f 000m ð0Þ � C2Knf 00mð0Þ ¼ 0 f mð1Þ ¼ 0 f 00mð1Þ ¼ 0 ð26Þ

The symbolic calculation software Mathematica was used to solve
the set of linear differential Eq. (20) with conditions (21) and (26)
up to first few orders of approximations.

The corresponding second-order approximations can be ex-
pressed by,

f ðgÞ ¼ f0ðgÞ þ f1ðgÞ þ f2ðgÞ ð27Þ

F2 �0.000504084 �2.95717E�9 �2.02814E�09 �2.84559E�9
F3 3.43016E�06 3.68159E�14 2.75715E�14 3.57633E�14
F4 �2.08621E�08 �3.34607E�19 �3.34292E�19 �3.3661E�19
F5 1.06355E�10 7.14115E�25 3.38E�24 1.12457E�24
F6 �3.6492E�13 5.36636E�29 �2.26555E�29 4.22465E�29
F7 �4.83781E�16 �1.46596E�33 �7.67555E�35 �1.26837E�33
4.3. Convergence theorem

For first-order slip model, the series f ðgÞ ¼ f0ðgÞ þ
Pþ1

m¼1fmðgÞ is
an exact solution of Eqs. (11), (13) and (14) as long as it is conver-
gent. Here, fm (g) satisfies Eqs. (18), (19) and definitions (22), (23)
are correct. The details of proof process of convergence theorem for
first-order slip model can be found in the paper [29]. It is almost
the same way to prove convergence theorem for second-order slip
model.

5. Results analysis

It is worth noting to point out that the advantage of the homot-
opy analysis method shows a fast convergence of the solutions by
means of the auxiliary parameter, ⁄ – 0. To adjust and control the
convergence region of solution series [17], the auxiliary parameter
for both first-slip model and second-slip model is chosen as ⁄ = 1.

In the calculation, we use first few orders to approximate the
series solutions. Table 1 shows the f value for first few orders at gi-
ven Kn number (Kn = 0.024 in slip flow region, Kn = 0.24 in transi-
tion region). As is shown, f3 are small enough to be neglected
both for first-order slip model and second-order slip model. The
higher order of f are too smaller than f3 to be neglected. So, the
assumption f(g) = f0(g) + f 1(g) + f2(g)(Eq. (27)) utilized in the cur-
rent calculation is reasonable. So the accurate enough results can
be obtained.

Fig. 2 shows fully developed velocity profiles at different Knud-
sen number in slip flow region. Here, band k is calculated from the
pressure distribution along flow direction in Barber and Emerson’s
study [30]. Velocity profiles fits well with that obtained by Barber
and Emerson [30], seeing Fig. 2. That is to say, Navier–Stokes equa-
tions with first-order slip model can describe flow in slip region
accurately.

For higher Kn number (Kn > 0.1, in transition flow region), both
first-order slip model and second-order slip model were selected to
calculate the slip flow. Fig. 3 shows the mass flow rate variation
with pressure ratio in high Kn number region. According to
Fig. 3, the results calculated from second-order slip model fit very
well with experimental data obtained by Arkilic [3]. However,
much error exists by using first-order slip model. These results
are almost the same as that obtained by Dongari et al. [14]. It
can be concluded that first-order slip model is not suitable in gov-
ern high Kn number region flow.

According to the pressure distribution at different Kn number
along the channel measured by Hsieh [4], parameters A, B, C and
k were obtained. Furthermore, the corresponding Re numbers were
calculated. Table 2 shows the comparison of Re number calculated
by using second-order slip model in this research with the exper-
imental data and their theoretical results using first-order slip
model. Almost the same conclusion can be made as that above.
That is, the data obtained by solving second-order slip model are
much more accurate than that obtained by solving first-order slip
model. Error for second-order slip model were all below 7%, how-
ever, the errors of the first-order slip model were almost exceed
10%. In another words, Navier–Stokes equations with first-order
slip boundary condition cannot govern high Kn number flow.



Fig. 2. Fully developed velocity profiles in slip flow region.
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Fig. 3. Mass flow rate variation with pressure ratio (C1 = 1.466, C2 = 0.9756 [15]).

Table 2
Comparison of Re number obtained by Hsieh [4] with that obtained by us (C1 = 1.466,
C2 = 0.9756 [15])

Re Error (%)

Experimental
data [4]

First-order
model [4]

Second-order
by HAM

First-order
model [4]

Second-order
by HAM

89.4 100.6 83.2 12.53 6.96
67.4 76.4 68.7 13.35 1.96
50.7 56.6 51.1 11.64 0.74
32.4 35.8 30.9 10.49 4.65
16.1 17.2 14.8 6.83 8.04

5.7 6 5.6 5.26 1.13
2.6 2.9 2.6 11.54 0.71

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

y/H

U
/U

m

Kn=0 Kn=0.1 Kn=0.3 Kn=1

Kn=1.5 Kn=2 Kn=5 Kn=10

Fig. 4. Velocity profiles with second-order slip model at different Kn number (C1 -
= 1.466, C2 = 0.9756 [15]).
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However, Re numbers fit well with experimental data by utilizing
second-order slip boundary condition and proper choose of the slip
coefficients.

Based on these results, one may conclude that Navier–Stokes
equations with second-order slip boundary conditions for rarefied
gases flow can possibly be valid by proper choice of the slip
coefficients.

Fig. 4 shows the velocity profiles at different Kn number. Here,
second-order slip model was used for calculation, and the same va-
lue of the slip coefficients C1 = 1.466, C2 = 0.9756 [15] as above
were used. As it shows, the slip velocity (the velocity at wall (Y/
H = 0)) increases with the increasing of Kn number. When Kn num-
ber goes up to 0.75, the slip velocity reaches maximum. Till now,
the velocity profiles and the variation trend of slip velocity are
physically reasonable. However, as Kn number increases further,
the slip velocity begins to decrease. The value of slip velocity
equals to zero when Kn number reaches about 1.5, here the veloc-
ity profiles are the same as that when Kn = 0 as it shows in the fig-
ure. It is wrong physically, because, as we have known, the slip
velocity increases with the increasing of Kn number. Even more,
when Kn number is larger than 1.5, the velocity profiles appears
reversal. That is, the slip velocity is even larger than the centerline
velocity. Afterward, when Kn number increases, the trend of veloc-
ity profiles become flat. These phenomena are incompatible with
the inner flow mechanism. In another word, it is physically wrong.
So, although some physical parameters such as mass flow rate and
Re number obtained by solving Navier–Stokes equations with sec-
ond-order slip boundary condition and proper choosing of the slip
coefficients C1 and C2 fit well with experimental data, the model
still cannot be used to govern flow in transition region as the veloc-
ity profiles at high Kn number are physically wrong.

6. Conclusions

In this paper, two-dimensional slip flow between two parallel
plates was analytically investigated. Ordinary differential equation
that describes this problem was obtained by using a new similarity
transformation. The homotopy analysis method (HAM) was ap-
plied to obtain the solution of this strongly nonlinear ordinary dif-
ferential equation.

It can be concluded that Navier–Stokes equations with first-or-
der slip model can govern flow in slip region accurately. However,
much error exists by using first-order slip model in transition re-
gion. So first-order slip model is not suitable to govern high Kn
number region flow. Some physical parameters such as mass flow
rate and Re number obtained by solving Navier–Stokes equations
with second-order slip boundary condition and proper choosing
of the slip coefficients C1 and C2 fit well with experimental data.
But the model still cannot be used to govern flow in transition re-
gion as the velocity profiles at high Kn number are physically
wrong.

On the basis of above analyze, Navier–Stokes equations with
current slip model boundary condition are not suitable for descrip-
tion of flow in transition region.
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